JADPRO Clinical Case Series

Case Studies in Myeloid Disorders: The Advanced Practitioner's Role in Patient Management

PRESENTER

Allyson Price MPAS, PA-C

Physician Assistant The University of Texas MD Anderson Cancer Center Houston, Texas

- Understand changes in the treatment landscape of patients with myeloid disorders
- Discuss role of advanced practitioners (APs) in the management of these patients
- Review case studies to understand treatment decision-making in myeloid diseases for a multidisciplinary team approach

Case 1: Myelodysplastic Syndrome

Case 1: Introduction to Mr. Richards

Diagnosed with macrocytic anemia

- Normal B₁₂, folic acid
- Referral to hematologist
- Bone marrow biopsy reveals low-risk MDS, diploid karyotype
- Low symptom burden

Laboratory Values in 2016 for Mr. Richards

Laboratory Parameters	Values in 2016
Serum EPO	5 mIU/mL
WBC	Normal
Platelets	Normal
Hemoglobin	9.2 g/dL

EPO, erythropoietin; MDS, myelodysplastic syndrome; WBC, white blood cells

Case 1: Becomes Symptomatic

- Low serum EPO level
- Develops symptomatic anemia
- Initiate darbepoetin alfa 300 µg every 2 weeks
 - Dose later increased to 500 µg every 2 weeks
 - Delays in therapy due to insurance complications

Case 1: Increasing Symptoms

Mr. Richards moves and establishes care at new facility

- Increasing SOB, fatigue
 - 1 unit of RBC administered
- Repeat bone marrow biopsy
 - Persistent MDS with multilineage dysplasia and no increase in blasts
 - Cytogenetics revealed trisomy 8 in 19 out of 20 metaphases

Next-Generation Sequencing Panel

Molecular Diagnostics								
ANKRD26	CBLB	EED	GFI1	JAK1	NF1	PTEN	SH2B3	SUZ12
ASXL1	CBLC	ELANE	GNAS	JAK2	NOTCH1	PTPN11	SMC1A	TERC
ASXL2	CEBPA	ETNK1	HNRNPK	JAK3	NPM1	RAD21	SMC3	TERT
BCOR	CREBBP	ETV6	HRAS	KDM6A	NRAS	RARA	SRSF2	TET2
BCORL1	CRLF2	EZH2	IDH1	KIT	PAX5	RUNX1	STAG1	<u>TP53</u>
BRAF	CSF3R	FBXW7	IDH2	KMT2A	PHF6	SETBP1	STAG2	U2AF1
BRINP3	CUX1	FLT3	IKZF1	KRAS	PIGA	SF1	STAT3	U2AF2
CALR	DDX41	GATA1	IL2RG	MAP2K1	PML	SF3A1	STAT5A	WT1
CBL	DNMT3A	GATA2	IL7R	MPL	PRPF40B	SF3B1	STAT5B	ZRSR2

Updated Laboratory Values

Lab Parameters	Values in 2016
Serum EPO	91.1 mIU/mL
Hemoglobin	8.5 g/dL

Case 1: Treatment Considerations

- Trend in hemoglobin
- Normal EPO level
- Loss of response to erythropoietin-stimulating agents (ESAs)
- Increased symptom burden and transfusion dependency

Case 1: MDS Polling Question

Given the trend in Mr. Richards' counts, loss of response to ESA, and symptom burden, which of the following is your recommendation?

- A. Switch to a different ESA 9%
- B. Initiate regular blood transfusions 9%
- C. Switch to luspatercept 69%
- D. Begin a hypomethylating agent (HMA) 14%

Case 1: MDS - Luspatercept

Initiated luspatercept

• 1 mg/kg for total 75 mg every 21 days

No improvement after 2 injections

- No change in hemoglobin
- Symptoms of fatigue and SOB with exertion

Luspatercept

Hemoglobin

- >11.5 g/dL → HOLD
- $\geq 2 \text{ g/dL} \rightarrow \text{CHANGE}$
- Blood pressure
- Systolic \geq 160 mm Hg \rightarrow HOLD
- Diastolic ≥100 mm Hg → HOLD

Increased luspatercept dose to 1.33 mg/kg

Response to luspatercept

- Median hemoglobin, 11.1 g/dL
- Improvement in clinical symptoms
- Site irritation noted

Case 1: Luspatercept Considerations

- Mechanism of action: erythroid maturation agent
- Dose adjustments
- Adverse side effects
 - Hypertension
 - Arthralgias
 - GI symptoms
 - Irritation at injection site

GI, gastrointestinal

Case 2: Myelofibrosis

Case 2: Introduction to Mr. Brown

72-year-old man with history of myelofibrosis (MF) diagnosed in 2012

- WBC 15,000
- Asymptomatic splenomegaly
- No anemia/thrombocytopenia
- No symptom burden

Bone Marrow Biopsy Results in 2012

Features	Values in 2016
Cellularity	60%
Megakaryocytes	Atypical
BCR-ABL fusion	Negative
JAK2 mutation	Positive
MF grade	1

Case 2: Increasing Grade With Minimal Symptoms

- Mild thrombocytopenia noted in 2013
 - Platelets 113,000 /mcL
 - Referred to leukemia department
- Minimal symptom burden
- Treatment indications?

Repeat bone marrow biopsy in 2013

 Persistent myeloproliferative neoplasm with MF grade 3, not associated with any dysplastic changes

Case 2: Increasing Symptoms

Observation until 2020

- Progressive splenomegaly
- Decrease appetite with residual weight loss
- Progressive thrombocytopenia
- Worsening fatigue
- Treatment indications?

Next-Generation Sequencing Panel

Molecular Diagnostics								
ANKRD26	CBLB	EED	GFI1	JAK1	NF1	PTEN	SH2B3	SUZ12
ASXL1	CBLC	ELANE	GNAS	JAK2	NOTCH1	PTPN11	SMC1A	TERC
ASXL2	CEBPA	ETNK1	HNRNPK	JAK3	NPM1	RAD21	SMC3	TERT
BCOR	CREBBP	ETV6	HRAS	KDM6A	NRAS	RARA	SRSF2	TET2
BCORL1	CRLF2	EZH2	IDH1	KIT	PAX5	RUNX1	STAG1	<u>TP53</u>
BRAF	CSF3R	FBXW7	IDH2	KMT2A	PHF6	SETBP1	STAG2	U2AF1
BRINP3	CUX1	FLT3	IKZF1	KRAS	PIGA	SF1	STAT3	U2AF2
CALR	DDX41	GATA1	IL2RG	MAP2K1	PML	SF3A1	STAT5A	WT1
CBL	DNMT3A	GATA2	IL7R	MPL	PRPF40B	SF3B1	STAT5B	ZRSR2

Laboratory Values in 2020

Lab Parameters	Values
WBC	17,000 /mcL
Hemoglobin	16.3 g/dL
Platelets	60,000 /mcL

Case 2: Treatment Selection

Ruxolitinib vs fedratinib

- Frontline therapy for intermediate-risk MF with progressive symptom burden and splenomegaly
- Platelet count

Initiated fedratinib 400 mg PO daily with meals with weekly monitoring by APs

Case 2: Improving Symptoms

Initiated fedratinib

- Complained of nausea, reflux with residual weight loss
- Consideration of GI prophylaxis?

Evaluation at 4 weeks

- Stable spleen size
- Mild increase in appetite

Evaluation at 6 weeks

- Elevated ALT/AST consistent with grade 1 toxicity
- Rule out other hepatoxic regimens
- Continue and monitor with repeat labs

ALT, alanine aminotransferase; AST, aspartate aminotransferase

Case 2: MF Polling Question

If a patient experiences a mild to moderate (grade 1) ALT and/or AST elevation while taking fedratinib, what are your typical recommendations?

- A. Continue fedratinib and monitor liver function tests 67%
- B. Hold fedratinib until the ALT/AST elevation resolves 4%
- C. Switch to another agent 15%
- D. I'm unsure 15%

Case 2: Myelofibrosis

Mr. Brown was re-evaluated at 6 months

- Reduction in spleen size ~7 cm
- Liver enzymes stable
- GI symptoms manageable
- Symptom burden improved
- CBC stable
- Continuation of treatment
 - Compliance

CBC, complete blood count

Case 3: Acute Myeloid Leukemia

Case 3: Introduction to Mr. Green

- 35-year-old male otherwise healthy with no past medical history presents to ED for new acute leukemia
 - Reports fatigue and "small red dots all over body"
 - Noted to have pancytopenia with peripheral blasts
 - CMP WNL
 - Vitals unremarkable
 - Physical exam only showed petechiae
 - PS = 1

Initial Laboratory Values for Mr. Green

Lab Parameters	Values
WBC	4.3 x 10 ⁹ /L
Hemoglobin	9.6 g/dL
Platelets	36 x 10 ⁹ /L
ANC	0.82
Peripheral blasts	28%

ANC, absolute neutrophil count; ED, emergency department; PS, performance status

Case 3: Work-up

Acute myeloid leukemia (AML) with multilineage dysplasia (AML-MRC)

- NGS panel positive for mutations in NRAS, ASXL1, and IDH2 (allelic burden <2%)
- Baseline chest x-ray, CT chest, echo were all within normal limits

Initial Bone Marrow Biopsy Results

Features	Values in 2016
Blasts	37%
MPO expression	Positive
IHC blast staining	
BCL-2	Positive
MYC	Subset positive
p53	Negative
NPM1	Negative
Cytogenetics	45,X,Y[10]/46,XY,del(9)(q13q 34)[2]/46,XY[8]

IHC, immunohistochemistry; MPO, myeloperoxidase

Case 3: Treatment Selection

Induction protocol: CLIA + venetoclax

- Day 28 marrow: 2% blast, diploid karyotype, flow negative for MRD
- Complications: rectal abscess, prolonged myelosuppression

Consolidation cycles 2 & 3 dose reduced 25%

- Complications: rectal abscess, prolonged myelosuppression
- Cycle 4 further dose reduced

SCT vs maintenance therapy?

- 10/10 MUD
- Socioeconomic concerns

Case 3: Maintenance Therapy

Mr. Green decides to proceed with maintenance

- Oral azacitidine 300 mg PO daily on days 1-14 of 28-day cycle
- Oral ondansetron ODT 4 mg sublingual 30 minutes prior to each dose as prophylaxis
- Cycle 1 Day 1 Mr. Green had complete count recovery with ANC >1.00 and platelets >100 /L

Case 3: AML Polling Question

What are some common side effects associated with oral azacitidine that you counsel your patients about? Select all that apply.

- A. Nausea **32%**
- B. Diarrhea 25%
- C. Myelosuppression 24%
- D. Infections 19%

Case 3: Monitoring Oral Azacitidine

Monitoring on oral azacitidine

- GI toxicity, myelosuppression
- Labs monitored twice weekly

Required 1 unit of RBC and 2 platelet transfusions during Cycle 1

Transfusion dependency increased in Cycle 2

- Day 28 follow up ANC <1.00
- Platelets 50 x 10⁹/L
- Delay cycle 3?
- Mr. Green also complaining of increased nausea and reflux

Case 3: Oral Azacitidine Considerations

Monitoring on oral azacitidine

- Pharmacokinetics/pharmacodynamics versus IV/SC azacitidine
- How often to monitor patients?
- Prophylaxis for nausea? GI toxicities?

Conclusions

- The treatment paradigm in low-risk MDS has evolved, with additional options for those who no longer respond to ESAs
- Managing potential side effects of therapy allows patients to derive maximal benefit from their treatment regimen
- Monitoring patients for potential adverse effects is important to maintain quality of life

The Role of the AP

- ✓ Monitor and dose-adjust patients on anti-cancer therapy
- Collaborate with other members of the healthcare team to choose the most appropriate treatment option based on the patient's individual risk factors
- ✓ Educate patients regarding toxicity profiles and efficacy of anti-cancer therapies
- ✓ Manage side effects of anti-cancer therapy

Please type your questions for Allyson Price into the **question box** in the control panel.

Thank You